# BibliographyΒΆ

Simon Dobson. Epidemic modelling: Some notes, maths, and code. Independent Publishing Network. ISBN 978-183853-565-0. 2020.

Daniel Gillespie. A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. Journal of
Computational Physics **22**, pp.403-β434. 1976.

Daniel Gillespie. Exact stochastic simulation of coupled chemical
reactions. Journal of Physical Chemistry **81** (25),
pp.2340-β2361. 1977.

Herbert Hethcote. The mathematics of infectious diseases. SIAM Review **42**
(4), pp.599β653. December 2000.

W.O. Kermack and A.G. McKendrick. A contribution to the mathematical
theory of epidemics. Proceedings of the Royal
Society A **115** (772). 1927.

Istvan Kiss, Joel Miller, and Peter Simon. Mathematics of
epidemics on networks.
Springer series on Interdisciplinary Applied Mathematics
**46**. ISBN 978-3-319-50804-7. 2017.

Sergey Melnik, Adam Hackett, Mason Porter, Peter Mucha, and James Gleeson.
The unreasonable effectiveness of tree-based theory for networks with
clustering.
Physical Review E **83**. March 2011.

Joel Miller. Percolation and epidemics in random clustered networks.
Physical Review E **80**. August 2009.

Christopher Moore, Gourab Ghosal, and M.E.J. Newman. Exact solutions for models of evolving
networks with addition and deletion of nodes.
Physical Review E **74**. September 2006.

M.E.J. Newman. Spread of epidemic disease on networks. Physical Review E
**66**. July 2002.

M.E.J. Newman and R.M. Ziff. Efficient Monte Carlo algorithm and high-precision results
for percolation. Physical Review Letters **85**.
November 2000.

Saray Shai and Simon Dobson. Coupled adaptive complex networks. Physical Review E **87** (4). April 2013.